Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1379853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650937

RESUMO

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.

2.
ACS Nano ; 17(16): 16174-16191, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535897

RESUMO

Extracellular vesicles (EVs) obtained from endothelial cells (ECs) have significant therapeutic potential in the clinical management of individuals with ischemic stroke (IS) because they effectively treat ischemic stroke in animal models. However, because molecular probes with both high labeling efficiency and tracer stability are lacking, monitoring the actions of EC-EVs in the brain remains difficult. The specific intracellular targets in the brain that EC-EVs act on to produce their protective effects are still unknown, greatly impeding their use in clinical settings. For this research, we created a probe that possessed aggregation-induced emission (AIE) traits (namely, TTCP), enabling the effective labeling of EC-EVs while preserving their physiological properties. In vitro, TTCP simultaneously had a higher EC-EV labeling efficiency and better tracer stability than the commercial EV tags PKH-67 and DiI. In vivo, TTCP precisely tracked the actions of EC-EVs in a mouse IS model without influencing their protective effects. Furthermore, through the utilization of TTCP, it was determined that astrocytes were the specific cells affected by EC-EVs and that EC-EVs exhibited a safeguarding impact on astrocytes following cerebral ischemia-reperfusion (I/R) injury. These protective effects encompassed the reduction of the inflammatory reaction and apoptosis as well as the enhancement of cell proliferation. Further analysis showed that miRNA-155-5p carried by EC-EVs is responsible for these protective effects via regulation of the c-Fos/AP-1 pathway; this information provided a strategy for IS therapy. In conclusion, TTCP has a high EC-EV labeling efficiency and favorable in vivo tracer stability during IS therapy. Moreover, EC-EVs are absorbed by astrocytes during cerebral I/R injury and promote the restoration of neurological function through the regulation of the c-Fos/AP-1 signaling pathway.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Células Endoteliais/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Astrócitos , Fator de Transcrição AP-1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 261-267, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765509

RESUMO

OBJECTIVE: To analyze the clinical characteristics of hemophagocytic syndrome (HLH) children with different EB virus (EBV) DNA loads, and to explore the relationship between differential indicators and prognosis. METHODS: Clinical data of 73 children with HLH treated in our hospital from January 2015 to April 2022 were collected. According to EBV DNA loads, the children were divided into negative group (≤5×102 copies/ml), low load group (>5×102-<5×105 copies/ml) and high load group (≥5×105copies/ml). The clinical symptoms and laboratory indexes of the three groups were compared, and the ROC curve was used to determine the best cut-off value of the different indexes. Cox regression model was used to analyze the independent risk factors affecting the prognosis of children, and to analyze the survival of children in each group. RESULTS: The proportion of female children, the swelling rate of liver and spleen lymph nodes and the involvement rate of blood, liver, circulation and central nervous system in the high load group were higher than those in the negative group. The incidence of disseminated intravascular coagulation(DIC) and central nervous system(CNS) involvement in the high load group were higher than those in the low load group. The liver swelling rate and circulatory system involvement rate in the low load group were higher than those in the negative group(P<0.05). PLT counts in the high load group were significantly lower than those in the negative group, and the levels of GGT, TBIL, CK-MB, LDH, TG, SF, and organ involvement were significantly higher than those in the negative group. The levels of CK, LDH, SF and the number of organ involvement in the high load group were significantly higher than those in the low load group. The levels of GGT and TBIL in low load group were significantly higher than those in negative group. In terms of treatment, the proportion of blood purification therapy in the high and low load group was significantly higher than that in the negative group(P<0.01). ROC curve analysis showed that the best cut-off values of PLT, LDH, TG and SF were 49.5, 1139, 3.12 and 1812, respectively. The appellate laboratory indicators were dichotomized according to the cut-off value, and the differential clinical symptoms were included in the Cox regression model. Univariate analysis showed that LDH>1139 U/L, SF>1812 µg/L, dysfunction of central nervous system, number of organ damage, DIC and no blood purification therapy were the risk factors affecting the prognosis of children (P<0.05); Multivariate analysis shows that PLT≤49.5×109/L and dysfunction of central nervous system were risk factors affecting the prognosis of children (P<0.05). Survival analysis showed that there was no significant difference in the survival rate among the three groups. CONCLUSION: The incidence of adverse prognostic factors in children with HLH in the EBV-DNA high load group is higher, and there is no significant difference in the survival rate of the three groups after blood purification therapy. Therefore, early identification and application of blood purification therapy is of great significance for children with HLH in the high load group.


Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Criança , Feminino , Estudos Retrospectivos , Fatores de Risco , DNA , Prognóstico
4.
J Autoimmun ; 133: 102945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356552

RESUMO

Monocytes in peripheral blood and sciatic nerves play vital roles in immune-mediated neuropathies such as Guillain-Barré syndrome (GBS). Different subpopulations of monocytes, including classical and non-classical, exhibit distinct functions as well as phenotypic conversion potentials. However, the mechanisms underlying their development during immune-mediated neuropathy remain unclear. Notch signaling participates in monocyte differentiation and function. In this study, we used a myeloid-specific Notch signaling activation transgenic mouse (NICcA) and investigated the role of Notch signaling in monocytes during experimental autoimmune neuritis (EAN) in a mouse model of GBS. Clinical score assessment and histopathological examination revealed that sciatic nerve injury was attenuated in NICcA EAN mice compared to that in control mice. Flow cytometry and immunofluorescence staining suggested that increasing Ly6Clo monocytes in the peripheral blood and nerve tissue might contribute to the alleviation of neuritis in NICcA mice. Meanwhile, an in vitro study suggested that bone marrow-derived monocytes from NICcA mice are more inclined toward Ly6Clo cells than Ly6Chi cells. Differential expression of monocyte development-associated genes was detected in NICcA and wild-type mice using RNA sequencing. The expression of Nr4a1 is upregulated remarkably when Notch signaling is activated. Treatment with Nr4a1 antagonist on NICcA mice-derived monocytes compromise their Ly6Clo tendency. Consistently, a relationship between monocyte conversion and disease severity was observed in blood samples from patients with GBS. In conclusion, our current study showed that monocyte conversion modulated by Notch signaling plays an essential role in the EAN mouse model.


Assuntos
Monócitos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Camundongos , Animais , Análise de Sequência de RNA
5.
Front Cell Neurosci ; 16: 866020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685988

RESUMO

Epigenetic regulations on the maintenance of neural stem cells (NSCs) are complicated and far from been fully understood. Our previous findings have shown that after blocking Notch signaling in NSCs in vivo, the stemness of NSCs decreases, accompanied by the downregulated expression of miR-582-5p. In the current study, we further investigated the function and mechanism of miR-582-5p in the maintenance of NSCs in vitro and in vivo. After transfecting a mimic of miR-582-5p, the formation of neurospheres and proliferation of NSCs and intermediate progenitor cells (NS/PCs) were enhanced, and the expression of stemness markers such as Sox2, Nestin, and Pax6 also increased. The results were reversed after transfection of an inhibitor of miR-582-5p. We further generated miR-582 knock-out (KO) mice to investigate its function in vivo, and we found that the number of NSCs in the subventricular zone (SVZ) region decreased and the number of neuroblasts increased in miR-582 deficient mice, indicating reduced stemness and enhanced neurogenesis of NSCs. Moreover, RNA-sequencing and molecular biological analysis revealed that miR-582-5p regulates the stemness and proliferation of NSCs by inhibiting secretory protein FAM19A1. In summary, our research uncovered a new epigenetic mechanism that regulates the maintenance of NSCs, therefore providing novel targets to amplify NSCs in vitro and to promote neurogenesis in vivo during brain pathology and aging.

6.
Front Immunol ; 13: 853094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514986

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignancy characterized by the aberrant accumulation of immature B-cell precursors in bone marrow and other lymphoid organs. Although several intrinsic regulatory signals participating in BCP-ALL have been clarified, detailed intrinsic and extrinsic mechanisms that regulate BCP-ALL progression have not been fully understood. In the current study, we report that miR-582 is downregulated in BCP-ALL cells compared with normal B cells. Forced overexpression of miR-582 attenuated BCP-ALL cell proliferation and survival. We found that miR-582 overexpression disturbed the mitochondrial metabolism of BCP-ALL cells, leading to less ATP but more ROS production. Mechanistically, we identified PPTC7 as a direct target of miR-582. MiR-582 overexpression inhibited the activity of CoQ10, which is downstream of PPTC7 and played an important positive regulatory role in mitochondrial electron transportation. Finally, we found that overexpression of miR-582 upregulated the expression of immune checkpoint molecule CD276 and reduced NK cell-mediated cytotoxicity against BCP-ALL cells. CD276 blockade significantly increased NK cell-mediated cytotoxicity against miR-582-overexpressing BCP-ALL cells. Together, our research demonstrates that miR-582 acts as a negative regulator of BCP-ALL cells by reducing proliferation and survival, but protects BCP-ALL cells from NK cell-mediated cytotoxicity, suggesting that miR-582 may be a new therapeutic biomarker for BCP-ALL with CD276 blocker.


Assuntos
Linfoma de Burkitt , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Antígenos B7 , Proliferação de Células/fisiologia , Humanos , Células Matadoras Naturais , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição
7.
Neurosci Lett ; 778: 136603, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364125

RESUMO

During neurodevelopment, differentiation of neural stem/progenitor cells (NSPCs) into neurons are regulated by many factors including Notch signaling pathway. Herein, we report the effect of a Notch signaling blocker, i.e. γ -secretase inhibitor (GSI), on this differentiating process, especially on the morphological development. NSPCs were cultured and induced to differentiate with or without GSI. The neurite outgrowth was impeded by GSI application and the expression of a Notch signaling downstream effector miR-342-5p increased with the downregulated expression of Notch effectors Hes1 and Hes5. Upregulated expression of miR-342-5p in differentiating NSPCs could shorten the neurite length of progeny neurons, which was similar to the effect of GSI. To avoid the possible influence from astrocytes into neurons, we directly applied cultured neurons, on which GSI could shorten the processes and RBP-J knockdown could also reduce the neurite length. Similarly, transfection of miR-342-5p mimics or inhibitors into PC12 cells led to shorter or longer processes of cells compared with control ones. Furthermore, in differentiating NSPCs, GSI-induced shorter neurites could be partially rescued by miR-342-5p inhibitors, and STAT3 was one of the possible targets of miR-342-5p during this differentiating process as indicated by results of Western Blot test, luciferase reporter assay and GFP reporter assay. To further demonstrate the role of STAT3, it was introduced into GSI-treated neurons and the GSI-affected neurites could also be partially rescued. In conclusion, GSI could influence the morphological development of neurons and the possible mechanism involved Notch/miR-342-5p and STAT3. These results would be informative for future therapeutic research.


Assuntos
Inibidores e Moduladores de Secretases gama , MicroRNAs , Células-Tronco Neurais , Receptores Notch , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Inibidores e Moduladores de Secretases gama/farmacologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais
8.
Cell Death Dis ; 13(2): 107, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115499

RESUMO

B cell development in bone marrow (BM) is a multi-staged process involving pro-B, pre-B, immature B, and mature B cells, among which pre-B cells undergo vigorous proliferation, differentiation, apoptosis, and gene rearrangement. While several signaling pathways participate in pre-B cell development have been clarified, detailed intrinsic mechanisms regulating pre-B cell proliferation and survival have not been fully understood. In the current study, we report that miR-582 regulates pre-B cell proliferation and survival. miR-582 is enriched in pre-B cells. Deletion of miR-582 in mice expanded the BM pre-B cell population in a cell-autonomous manner as shown by competitive BM transplantation. We show that forced miR-582 overexpression inhibited pre-B cell proliferation and survival, whereas downregulation of miR-582 by siRNA significantly promoted pre-B cell proliferation and survival in vitro. We identified that Hif1α and Rictor are authentic targets of miR-582 in pre-B cells as shown by reporter assays. Moreover, miR-582 overexpression reduced the expression of Hif1α and its downstream molecule Glut1, as well as Rictor and mTORC2 activity as shown by attenuated AKT and FoxO1 phosphorylation, while miR-582 knockdown showed opposite effects. miR-582 knockdown-induced increases in pre-B proliferation and survival was abrogated by Hif1α and Rictor inhibitors. Together, miR-582 functions as a negative regulator of pre-B cell proliferation and survival by simultaneously targeting Hif1α and mTORC2 signaling that regulates metabolism in early B cell development.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Células Precursoras de Linfócitos B , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , MicroRNAs/genética , Células Precursoras de Linfócitos B/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
9.
Front Cell Dev Biol ; 9: 779373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869383

RESUMO

The quiescence, activation, and subsequent neurogenesis of neural stem cells (NSCs) play essential roles in the physiological homeostasis and pathological repair of the central nervous system. Previous studies indicate that transmembrane protein Ttyh1 is required for the stemness of NSCs, whereas the exact functions in vivo and precise mechanisms are still waiting to be elucidated. By constructing Ttyh1-promoter driven reporter mice, we determined the specific expression of Ttyh1 in quiescent NSCs and niche astrocytes. Further evaluations on Ttyh1 knockout mice revealed that Ttyh1 ablation leads to activated neurogenesis and enhanced spatial learning and memory in adult mice (6-8 weeks). Correspondingly, Ttyh1 deficiency results in accelerated exhaustion of NSC pool and impaired neurogenesis in aged mice (12 months). By RNA-sequencing, bioinformatics and molecular biological analysis, we found that Ttyh1 is involved in the regulation of calcium signaling in NSCs, and transcription factor NFATc3 is a critical effector in quiescence versus cell cycle entry regulated by Ttyh1. Our research uncovered new endogenous mechanisms that regulate quiescence versus activation of NSCs, therefore provide novel targets for the intervention to activate quiescent NSCs to participate in injury repair during pathology and aging.

10.
Biomed Pharmacother ; 138: 111489, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743332

RESUMO

Guillain-Barré Syndrome (GBS), characterized by peripheral nerve demyelination and axonal damage, is initiated and aggravated through various of immunopathogenesis. Ginsenoside Rd, main active components extracted from ginseng saponins, is known to exhibit immune-regulate functions in many immune-mediated diseases. However, the evidence of preventive effect of Ginsenoside Rd on GBS is lacking. Experimental autoimmune neuritis (EAN) mice, classic model of GBS, were established and treated with GSRd or vehicle. Clinical score and nerve tissue histomorphology were evaluated. Monocytes in peripheral blood and tissue were detected by flow cytometry analysis and immunofluorescence staining. For the in vitro study, GSRd and vehicle were added in the culture medium to assess their regulatory function on monocytes phenotype. In vivo data showed a protective role of GSRd on alleviating symptoms and tissue damage on Day 20 and 25. Administration of GSRd increased non-classical Ly6Clo monocytes in both peripheral blood and injured nerve tissue, and also switched tissue macrophages phenotype into resolution-phase. In vitro study indicated similar role of GSRd on monocytes differentiation status. Transcription factors like Nr4a1 were elevated after GSRd treatment. These findings revealed the protective role of GSRd against EAN, and potential preventive function on GBS patients.


Assuntos
Ginsenosídeos/uso terapêutico , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/imunologia , Panax , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Ginsenosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/imunologia
11.
Front Cell Dev Biol ; 9: 620883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614649

RESUMO

Formation of glioma stem cells (GSCs) is considered as one of the main reasons of temozolomide (TMZ) resistance in glioma patients. Recent studies have shown that tumor microenvironment-derived signals could promote GSCs formation. But the critical molecule and underlying mechanism for GSCs formation after TMZ treatment is not entirely identified. Our study showed that TMZ treatment promoted GSCs formation by glioma cells; TMZ treatment of biopsy-derived glioblastoma multiforme cells upregulated HMGB1; HMGB1 altered gene expression profile of glioma cells with respect to mRNA, lncRNA and miRNA. Furthermore, our results showed that TMZ-induced HMGB1 increased the formation of GSCs and when HMGB1 was downregulated, TMZ-mediated GSCs formation was attenuated. Finally, we showed that the effect of HMGB1 on glioma cells was mediated by TLR2, which activated Wnt/ß-catenin signaling to promote GSCs. Mechanistically, we found that HMGB1 upregulated NEAT1, which was responsible for Wnt/ß-catenin activation. In conclusion, TMZ treatment upregulates HMGB1, which promotes the formation of GSCs via the TLR2/NEAT1/Wnt pathway. Blocking HMGB1-mediated GSCs formation could serve as a potential therapeutic target for preventing TMZ resistance in GBM patients.

12.
Neurosci Bull ; 37(4): 478-496, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33355899

RESUMO

Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.


Assuntos
Nociceptores , Transmissão Sináptica , Animais , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Dor , Substância Cinzenta Periaquedutal
13.
Cell Commun Signal ; 18(1): 135, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843056

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are glioma cells with stemness and are responsible for a variety of malignant behaviors of glioma. Evidence has shown that signals from tumor microenvironment (TME) enhance stemness of glioma cells. However, identification of the signaling molecules and underlying mechanisms has not been completely elucidated. METHODS: Human samples and glioma cell lines were cultured in vitro to determine the effects of adenovirus (ADV) infection by sphere formation, RT-qPCR, western blotting, FACS and immunofluorescence. For in vivo analysis, mouse intracranial tumor model was applied. Bioinformatics analysis, gene knockdown by siRNA, RT-qPCR and western blotting were applied for further mechanistic studies. RESULTS: Infection of patient-derived glioma cells with ADV increases the formation of tumor spheres. ADV infection upregulated stem cell markers and in turn promoted the capacities of self-renewal and multi-lineage differentiation of the infected tumor spheres. These ADV infected tumor spheres had stronger potential to form xenograft tumors in immune-compromised mice. GSCs formation could be promoted by ADV infection via TLR9, because TLR9 was upregulated after ADV infection, and knockdown of TLR9 reduced ADV-induced GSCs. Consistently, MYD88, as well as total STAT3 and phosphorylated (p-)STAT3, were also upregulated in ADV-induced GSCs. Knockdown of MYD88 or pharmaceutical inhibition of STAT3 attenuated stemness of ADV-induced GSCs. Moreover, we found that ADV infection upregulated lncRNA NEAT1. Knockdown of NEAT1 impaired stemness of ADV-induced GSCs. Lastly, HMGB1, a damage associated molecular pattern (DAMP) that triggers TLR signaling, also upregulated stemness markers in glioma cells. CONCLUSION: ADV, which has been developed as vectors for gene therapy and oncolytic virus, promotes the formation of GSCs via TLR9/NEAT1/STAT3 signaling. Video abstract.


Assuntos
Infecções por Adenoviridae/complicações , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator 88 de Diferenciação Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
14.
J Exp Clin Cancer Res ; 39(1): 124, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616053

RESUMO

BACKGROUND: Malformation of blood vessels represents a hallmark of cancers, but the role and regulation of vascular mural cells (vMCs), including vascular smooth muscle cells (vSMCs) and pericytes, in tumors has not been fully understood. SM22α has been identified as a marker of vSMCs. This study aims at elucidating the function and regulation of SM22α+ mural cells (SM22-MCs) in tumor stroma. METHODS: Gene-modified mice with a SM22α-CreERT2 transgene were employed to deplete SM22-MCs or activate/block Notch signaling in these cells. vSMCs from mouse dorsal aorta (vSMCs-DA) were cultured in vitro. RNA-seq was used to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence was used to observe morphological alterations in tumors. RESULTS: SM22-MCs are essential for stabilizing tumor vasculature. Notch signaling was downregulated in tumor-derived SM22-MCs and vSMCs-DA treated with cancer cell-derived conditioned medium. Notch activation in SM22-MCs normalized tumor vasculature and repressed tumor growth. On the other hand, Notch disruption aggravated abnormal tumor vasculature and promoted growth and metastasis. Gene expression profiling of vSMCs-DA showed that Notch activation enhances their contractile phenotype and suppresses their secretory phenotype, further attenuating the invasion and proliferation of tumor cells. In contrast, Notch blockade in vSMCs-DA mitigated their contractile phenotype while strengthened the secretory phenotype. CONCLUSION: SM22-MCs facilitate vessel stability in tumors, and they gain a secretory phenotype and promote tumor malignancy in the absence of Notch signaling.


Assuntos
Vasos Sanguíneos/patologia , Endotélio Vascular/patologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/patologia , Neoplasias/patologia , Neovascularização Patológica/patologia , Receptores Notch/metabolismo , Animais , Apoptose , Vasos Sanguíneos/metabolismo , Movimento Celular , Proliferação de Células , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Fenótipo , Receptores Notch/genética , Células Tumorais Cultivadas
15.
Int J Oncol ; 56(2): 606-617, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894296

RESUMO

Abnormal metabolism serves a critical role in the development and progression of different types of malignancies including glioblastoma (GBM), and may therefore serve as a promising target for treatment of cancer. Preclinical studies have indicated that a ketogenic diet (KD) may exhibit beneficial effects in patients with GBM; however, the underlying mechanisms remain incompletely understood. The aim of the present study was to evaluate the effects of a KD on glioma stem­like cells (GSCs), by culturing patient­derived primary GSCs as well as a GSC cell line in glucose­restricted, ß­hydroxybutyrate­containing medium (BHB­Glow) which was used to mimic clinical KD treatment. GSCs cultured in BHB­Glow medium exhibited reduced proliferation and increased apoptosis compared with cells grown in the control medium. Furthermore, decreased expression of stem cell markers, diminished self­renewal in vitro, and reduced tumorigenic capacity in vivo, providing evidence that the stemness of GSCs was compromised. Mechanistically, culturing in BHB­Glow medium reduced glucose uptake and inhibited glycolysis in GSCs. Furthermore, culturing in the BHB­Glow medium resulted in morphological and functional disturbances to the mitochondria of GSCs. These metabolic changes may have reduced ATP production, promoted lactic acid accumulation, and thus, increased the production of reactive oxygen species (ROS) in GSCs. The expression levels and activation of mammalian target of rapamycin, hypoxia­inducible factor 1 and B­cell lymphoma 2 were decreased, consistent with the reduced proliferation of GSCs in BHB­Glow medium. ROS scavenging reversed the inhibitory effects of a KD on GSCs. Taken together, the results demonstrate that treatment with KD inhibited proliferation of GSCs, increased apoptosis and attenuated the stemness in GSCs by increasing ROS production.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Neoplasias Encefálicas/dietoterapia , Dieta Cetogênica , Glioblastoma/dietoterapia , Células-Tronco Neoplásicas/patologia , Adolescente , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/cirurgia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Adulto Jovem
16.
Cell Death Dis ; 10(12): 869, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740664

RESUMO

Extracellular vesicles (EVs) including exosomes can serve as mediators of cell-cell communication under physiological and pathological conditions. However, cargo molecules carried by EVs to exert their functions, as well as mechanisms for their regulated release and intake, have been poorly understood. In this study, we examined the effects of endothelial cells-derived EVs on neurons suffering from oxygen-glucose deprivation (OGD), which mimics neuronal ischemia-reperfusion injury in human diseases. In a human umbilical endothelial cell (HUVEC)-neuron coculture assay, we found that HUVECs reduced apoptosis of neurons under OGD, and this effect was compromised by GW4869, a blocker of exosome release. Purified EVs could be internalized by neurons and alleviate neuronal apoptosis under OGD. A miRNA, miR-1290, was highly enriched in HUVECs-derived EVs and was responsible for EV-mediated neuronal protection under OGD. Interestingly, we found that OGD enhanced intake of EVs by neurons cultured in vitro. We examined the expression of several potential receptors for EV intake and found that caveolin-1 (Cav-1) was upregulated in OGD-treated neurons and mice suffering from middle cerebral artery occlusion (MCAO). Knock-down of Cav-1 in neurons reduced EV intake, and canceled EV-mediated neuronal protection under OGD. HUVEC-derived EVs alleviated MCAO-induced neuronal apoptosis in vivo. These findings suggested that ischemia likely upregulates Cav-1 expression in neurons to increase EV intake, which protects neurons by attenuating apoptosis via miR-1290.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Apoptose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
17.
Polymers (Basel) ; 11(6)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185626

RESUMO

The behavior of a polymer in a passive crowded medium or in a very dilute active bath has been well studied, while a polymer immersed in an environment featured by both crowding and activity remains an open problem. In this paper, a systematic Langevin simulation is performed to investigate the conformational change of a semi-flexible chain in a concentrated solution packed with spherical active crowders. A very novel shrinkage-to-swelling transition is observed for a polymer with small rigidity. The underlying phase diagram is constructed in the parameter space of active force and crowder size. Moreover, the variation of the polymer gyration radius demonstrates a non-monotonic dependence on the dynamical persistence length of the active particle. Lastly, the activity-crowding coupling effect in different crowder size baths is clarified. In the case of small crowders, activity strengthens the crowding-induced shrinkage to the chain. As crowder size increases, activity turns out to be a contrasting factor to crowding, resulting in a competitive shrinkage and swelling. In the large size situation, the swelling effect arising from activity eventually becomes dominant. The present study provides a deeper understanding of the unusual behavior of a semi-flexible polymer in an active and crowded medium, associated with the nontrivial activity-crowding coupling and the cooperative crowder size effect.

18.
Biochem Biophys Res Commun ; 514(3): 842-847, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31079925

RESUMO

Mammalian neural stem cells (NSCs) are not only responsible for normal development of the central nervous system (CNS), but also participate in brain homeostasis and repair, thus hold promising clinical potentials in the treatment of neurodegenerative diseases and trauma. However the molecular networks regulating the stemness and differentiation of NSCs have not been fully understood. In this study, we show that Tweety-homolog 1 (Ttyh1), a five-pass transmembrane protein specifically expressed in mouse brain, is involved in maintaining stemness of murine NSCs. Blocking or activating Notch signal led to downregulation and upregulation of Ttyh1 in cultured NSCs, respectively, suggesting that Ttyh1 is under the control of Notch signaling. Knockdown of Ttyh1 in cultured NSCs resulted in a transient increase in the number and size of neurospheres, followed by a decrease of stemness as manifested by compromised neurosphere formation, downregulated stem cell markers, and increased neuronal differentiation. We generated Ttyh1 knockout mice by deleting its exon 4 using the CRISPR-Cas9 technology. Surprisingly, in contrast to a previous report, Ttyh1 knockout did not result in embryonic lethality. NSCs derived from Ttyh1 knockout mice phenocopied NSCs transfected with Ttyh1 siRNA. Immunofluorescence showed that loss of Ttyh1 leads to the increase of neurogenesis in adult mice. Taken together, these findings indicate that Ttyh1, which is likely downstream to Notch signaling, plays an important role in regulating NSCs.


Assuntos
Diferenciação Celular , Proteínas de Membrana/deficiência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Perda do Embrião/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neurogênese
19.
Med Sci Monit ; 24: 8272-8278, 2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30447063

RESUMO

BACKGROUND Several immunological functions are dependent on circadian rhythms. However, there are still relatively few studies about circadian rhythms in neuromyelitis optica spectrum disorders (NMOSD) and 2D2 transgenic mice. We explore whether 2D2 mice have abnormalities in circadian rhythms and the potential underlying molecular mechanism. MATERIAL AND METHODS We first observed the wheel-running motion of the control and 2D2 mice using wheel-running measurements. The cytokine levels were also analyzed using enzyme-linked immunosorbent assay (ELISA), and the results of clock gene expressions in the suprachiasmatic nucleus (SCN) were investigated using real-time polymerase chain reaction (real-time PCR). RESULTS The wheel-running rhythm in 2D2 mice differed from that of the controls. The TNF-α and IL-10 rhythms were disrupted in 2D2 mice. Additionally, the rhythm of the clock genes, Per1 and Per2, and expression in the SCN of 2D2 mice were also changed. CONCLUSIONS The results presented here indicate that alteration of circadian rhythms in 2D2 mice affects behavior and immune function, and the potential molecular mechanism might be the Per1 and Per2 expression disorders in the SCN. 2D2 mice might be a suitable model for studying circadian disruption in NMOSD.


Assuntos
Ritmo Circadiano/fisiologia , Neuromielite Óptica/fisiopatologia , Animais , Ritmo Circadiano/genética , Feminino , Expressão Gênica , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Phys Chem Chem Phys ; 20(39): 25304-25313, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30255884

RESUMO

The diffusion of polystyrene (PS) polymer chains from a hydroxy (-OH)-terminated Si surface with different grafting densities φG is studied based on all-atom simulation. Our particular attention is paid to the impact of the attractive substrate on the diffusive and configurational properties of PS. Our simulation results uncover a very novel and unexpected modification to polymer diffusion with the increment of φG, namely, the diffusion is slowed down most significantly from a substrate with moderate grafting densities, while in lower or full grafting cases, the diffusive dynamics is even facilitated rather than retarded. The underlying mechanism is investigated in terms of energy and conformational change in detail. Surprisingly, we obtain a consistent scenario for diffusion. Under moderate grafting densities, the energy required to be overcome for diffusion is relatively large. In addition, PS chains are more likely to be in a stretched configuration subject to a slower relaxation. These facts can account for the hindered diffusion. While under lower or full grafting densities, the energy required for diffusion becomes even smaller than the ungrafted situation. Also, PS chains prefer a shrinking configuration undergoing faster relaxation. Consequently, the diffusion of PS is reasonably promoted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...